From the archive

Does CERN need to buy a computer?

11 November 1955

When CERN was just over a year old, the Scientific Policy Committee was asked its opinion “as to the advisability of purchasing [an] electronic computer”. Lew Kowarski thought we should buy one, and his proposal (CERN/SPC/13) makes fascinating reading. He gives an overview of the current state of the market and outlines some issues to be considered. These included costs and staffing requirements, but also the fact that physicists were unlikely to bother learning to use this new machine unless it was clear that the effort was worthwhile!

He considered the pros and cons of hiring a computer or collaborating with other institutes, but felt that purchase would serve us better “if an electronic computation is to become a standard technique in high-energy physics”. His recommendation was accepted, and the Ferranti Mercury computer was installed in June 1958 (see photo).

Timeline: 
From the archive

Neutrinos detected at last!

14 June 1956

On 14 June 1956 a telegram from Frederick Reines and Clyde Cowan informed Wolfgang Pauli that neutrinos had been detected from fission fragments - nearly 26 years after Pauli first postulated the neutral particle as a solution to the missing energy during beta decay.

Pauli had outlined his theory in a letter to the ‘Dear radioactive ladies and gentlemen’ at the Tübingen conference in December 1930, excusing his own absence from the conference on the grounds that he had to go to a dance in Zürich. The name “neutrino” was coined by Enrico Fermi in 1933.  

Apparently Pauli’s reply to the telegram did not arrive, so it survives only in the form of the draft sent by a secretary - Pauli simply says “Thanks for message. Everything comes to him who knows how to wait.”

Timeline: 
From the archive

Birth of the CERN fire brigade

16 July 1956

Safety is top priority in any scientific research laboratory, and fire prevention was an important issue from the earliest days of CERN. The newly constructed buildings were fitted with smoke detectors, and voluntary fire brigades and first aid teams were set up among staff members.  

The appointment of CERN’s first fire service chief, Pierre Vosdey, in July 1956 marked the start of the professional firefighting service that CERN enjoys today. Experienced firemen were recruited, who trained more volunteers. The service expanded during 1957, providing 24-hour cover and acquiring a fire engine, an ambulance, a 14 metre ladder, a motor pump, smoke detectors and 250 fire extinguishers. This photo shows some of the team in 1959. Today the CERN fire brigade has around 50 members and continues to work closely with the Swiss and French fire services to ensure safety on-site.

Timeline: 
From the archive

The P.A.U.L.I. and its uses

5 June 1957

In June 1957, V. F. Weisskopf proudly announced acquisition of an instrument with unique possibilities - an intricate mechanism for testing complicated physics theories and producing new ideas. But it required careful handling! Inexperienced operators testing a theory would often see no reaction at first, or just hear faint noises reminiscent of German expressions such as “Ganz dumm” and “Sind sie noch immer da?” It was rather bulky, almost spherical in shape, and very much dependent on the correct fuel supply. Weisskopf said that, for reasons not yet fully understood, nobody had been able to make the machine work before noon.

In fact, Wolfgang Pauli had been acquired as a professor at the ETH Zürich in 1928, but a footnote explained that the paper had been classified since 1932, and partial publication was only now permitted since the U.S.S.R. had succeeded in building a similar gadget with a radius 1.5 times larger than the original model.

You can read the full report here (p.9) along with other fascinating articles in the spoof Revues of Unclear Physics, published at the University of Birmingham to celebrate the 50th birthday of R. E. Peierls.

Timeline: 
From the archive

The first circulating beam in the Synchrocyclotron

1 August 1957

A log book entry written by Wolfgang Gentner, the head of SC Division, and signed by various colleagues, tells us that a short celebration was held on the 1st of August 1957 following the successful  appearance of the first circulating beam.

The 600 MeV Synchrocyclotron (SC)  was CERN’s first accelerator and provided beams for its earliest particle and nuclear physics experiments.  It was a remarkably long-lived machine, even when superseded by the larger Proton Synchrotron, and operated for 33 years before being decommissioned in December 1990. Work is currently underway to give the SC a new lease of life as an exhibition area and visitor attraction.

Timeline: 
From the archive

Closure of CERN’s Theoretical Study Division in Copenhagen

1 October 1957

During the construction of CERN in the 1950s, most staff were lodged in temporary offices nearby.  But the theoretical physics group (one of three study groups set up in 1952 as part of the ‘provisional CERN’) began life at the Theoretical Physics Institute, University of Copenhagen.  Niels Bohr led the group until September 1954, then handed over to Christian Møller. The photo shows CERN’s Director General Cornelius Bakker signing an agreement on the legal status of the group in Denmark in 1956.

It was always intended that the group would relocate back to the main CERN site over a period of five years, and the first theorists came to Geneva in 1954. They were based first at the University of Geneva, then in barracks near the airport, before finally moving to the new site in Meyrin. The Theory Group in Copenhagen officially closed on 1 October 1957.

Timeline: 
From the archive

8th Annual International Conference on High Energy Physics

5 July 1958

The 8th Annual International Conference on High Energy Physics – known as the Rochester Conference, from the name of its first venue – was held at the Physics Institute of the University of Geneva. The format for this meeting, which was also the 2nd CERN Conference on High Energy Nuclear Physics, differed slightly from previous years. To maximise use of time, rapporteurs were chosen summarise the developments in their field. You can read the proceedings here or look at some of the deliberations of the planning committee here.

Even if rapporteurs helped make the content clearer for participants, CERN’s Public Information Office pointed out that it ‘will probably be too hard to digest for the average reporter and reader, even if cleverly "popularized". Thus the main stress should be placed on personalities and the spirit of international cooperation.’ (See memo.) There were plenty of high profile physicists to choose from, including Nobel Prize winner Wolfgang Pauli; a rare recording of him speaking at the conference is online here.   

Timeline: 
From the archive

Yesterday’s Tomorrow’s World

24 February 1959

Fans of vintage British TV science documentaries might enjoy this early precursor to Tomorrow’s World. On weekdays (when the outside broadcast cameras weren’t needed to cover sports fixtures!) the Eye on Research crew visited scientific laboratories and research centres to discuss topical issues.

This was the BBC’s first regular science and technology series; it broadcast over forty episodes on a wide range of subjects between 1957 and 1962 (they are listed on BBC Genome). Presenting live from CERN on 24 February 1959, we see Raymond Baxter deploying all his famous interviewing skills to help some distinctly nervous scientists explain their work to the viewers. The soundtrack jumps a bit, but it’s still worth a look.

Timeline: 
From the archive

Preparing CERN’s HBC30 bubble chamber for testing

5 March 1959

The 30cm liquid hydrogen bubble chamber (HBC30) - here seen being inserted into its vacuum tank in March 1959 - was the first bubble chamber to be used for physics experiments at CERN. After testing with nitrogen and hydrogen it was placed in the Synchro-Cyclotron, and its first five days of operation in November yielded 100,000 photographs. In March 1960 it was moved to the proton Synchrotron, and by the time it ceased operations in spring 1962 it had consumed 150 km of film.

Bubble chambers were one of the main experimental tools used in high-energy physics during the 1950s and 1960s. They were filled with superheated liquid, and if a charged high-energy particle passed through the liquid started to boil along its path, producing a trail of tiny bubbles that could be photographed. CERN’s first bubble chamber was a small (10cm) trial model, developed to test this exciting new technique. Larger models soon followed, including the giantess Gargamelle and the Big European Bubble Chamber (BEBC).

Timeline: 
From the archive

CERN Courier No. 1

6 August 1959

‘It is a pleasure to introduce our long expected internal bulletin,’ wrote Director-General Cornelis Jan Bakker, ‘I hope it will benefit not only from your attention but also from the many suggestions which will certainly arise in CERN's fertile minds.’

The first CERN Courier featured visiting  VIPs, a forthcoming trip to Russia, feedback on the 13th CERN Council Session and a round-up of news at CERN and abroad (Other Peoples' Atoms). Behind the scenes, an introductory report from the editor discussed the objectives and format of the proposed journal, and also how to finance it. Disagreement about whether it would be ethically acceptable to include advertisements rumbled on for quite some time.

Timeline: 
From the archive

Pages

Subscribe to From the archive

You are here