First antiatoms produced: antihydrogen, at CERN
A team led by Walter Oelert created atoms of antihydrogen for the first time at CERN’s Low Energy Antiproton Ring (LEAR) facility. Nine of these atoms were produced in collisions between antiprotons and xenon atoms over a period of 3 weeks. Each one remained in existence for about 40 billionths of a second, travelled at nearly the speed of light over a path of 10 metres and then annihilated with ordinary matter. The annihilation produced the signal that showed that the anti-atoms had been created.
This was the first time that antimatter particles had been brought together to make complete atoms, and the first step in a programme to make detailed measurements of antihydrogen.
The hydrogen atom is the simplest atom of all, made of a single proton orbited by an electron. Some three quarters of all the ordinary matter in the universe is hydrogen, and the hydrogen atom is one of the best understood systems in physics. Comparison with antihydrogen offers a route to understanding the matter–antimatter asymmetry in the universe.