ISOLDE reports about the shape of mercury isotopes' nuclei

RILIS
Lasers at ISOLDE. RILIS experiment (Image: CERN)

ISOLDE reports about a phenomenon unique to mercury isotopes where the shape of the atomic nuclei dramatically moves between a football and rugby ball. Isotopes with extreme neutron to proton ratios are typically very short-lived, making them difficult to produce and study in the laboratory. The experiment reproduced one of ISOLDE’s flagship results of 40 years ago. The result showed that although most of the isotopes with neutron numbers between 96 and 136 have spherical nuclei, those with 101, 103 and 105 neutrons have strongly elongated nuclei, the shape of rugby balls. Several theories had tried to describe what was happening, but none was able to provide a full explanation.

Using one of the world’s most powerful supercomputers, theorists in Japan performed the most ambitious nuclear shell model calculations to date. These calculations identified the microscopic components that drive the shape shifting; specifically, that four protons are excited beyond a level predicted by expectations of how other stable isotopes in the nuclear landscape behave. These four protons combine with eight neutrons and this drives the shift to the elongated nuclear shape. In fact, both nuclear shapes are possible for each mercury isotope, depending on whether it is in the ground or excited state, but most have a football shaped nucleus in their ground state. The surprise is that Nature chooses the elongated rugby ball shape as the ground state for three of the isotopes.

Explore resources for media

Timeline