The ISOLTRAP collaboration measures the mass of exotic calcium nuclei
The ISOLTRAP collaboration publishes in the journal Nature the mass of exotic calcium nuclei using a new instrument installed at the ISOLDE facility. The results cast light on how nuclei can be described in terms of the fundamental strong force.
The ISOLTRAP team used the ISOLDE facility to make exotic isotopes of calcium, which has the magic number of 20 protons in a closed shell. Their goal was to find out how the shell structure evolves with increasing numbers of neutrons. Standard calcium with 20 neutrons is doubly magic, and a rare long-lived isotope has 28 neutrons – another magic number.
Now, the ISOLTRAP team has determined the masses of calcium isotopes all the way to calcium-54, which has 34 neutrons in addition to the 20 protons. The measurements not only reveal a new magic number, 32, but also pin down nuclear interactions in exotic neutron-rich nuclei.
Explore resources for the media.