IceCube measures 5σ significance level for the observation of extraterrestrial neutrinos

Inspired by the 1PeV events, IceCube began a follow up search with combined two powerful techniques. The first was to distinguish neutrino interactions that originated inside the detector from events which originate outside it. The second technique capitalized on the fact that downgoing atmospheric neutrinos should be accompanied by a cosmic-ray air shower depositing one or more muons inside IceCube whereas cosmic neutrinos should be unaccompanied. Consequently, a very high energy isolated downgoing neutrino is likely to be cosmic.

This search found 26 additional events and produced evidence for cosmic neutrinos at the 4σ significance level. The search was continued for an extra year in order to push the significance up to 5σ. One of the new events had an energy of above 2 PeV, making it the most energetic neutrino ever seen. Many explanations have been proposed for the IceCube observations, ranging from the relativistic particle jets emitted by active galactic nuclei to gamma ray busts, to galaxies to magnetars. Overall the solution is clear: More data is needed.