The history of CERN

CERN has come a long way since its foundation in 1954. This timeline collects the organization's major contracts, projects, partnerships and scientific advances.

08 02, 1988
Drupal 7 path

The excavation of the tunnel for the Large Electron–Positron Collider – Europe’s largest civil-engineering project prior to the Channel Tunnel – was completed on 8 February 1988. The two ends of the 27-kilometre ring came together with just one centimetre of error. The picture above shows a tunneling crew after completing a section of the tunnel between points 2 and 3 on the LEP ring. 

01 09, 1965
Drupal 7 path

By 1965, all three particles that make up atoms (electrons, protons and neutrons) were known to each have an antiparticle. So if particles, bound together in atoms, are the basic units of matter, it is natural to think that antiparticles, bound together in antiatoms, are the basic units of antimatter.

But are matter and antimatter exactly equal and opposite, or symmetric, as Dirac had implied? The next important step was to test this symmetry. Physicists wanted to know how subatomic antiparticles behave when they come together. Would an antiproton and an antineutron stick together to form an antinucleus, just as protons and neutrons stick together to form the nucleus of an atom?

The answer to the antinuclei question was found in 1965 with the observation of the antideuteron, a nucleus of antimatter made out of an antiproton plus an antineutron (while a deuteron – the nucleus of the deuterium atom – is made of a proton plus a neutron). The goal was simultaneously achieved by two teams of physicists, one led by Antonino Zichichi using the Proton Synchrotron at CERN, and the other led by Leon Lederman, using the Alternating Gradient Synchrotron (AGS) accelerator at the Brookhaven National Laboratory, New York.

The CERN paper, Experimental Observation of Antideuteron Production was published in the Italian particle-physics journal Il nuovo cimento on 1 September 1965 (the journal ended when it was merged into the European Physical Journal in 1999.

20 12, 1990
Drupal 7 path

By Christmas 1990, Sir Berners-Lee had defined the Web’s basic concepts, the html, http and URL, and he had written the first browser/editor and server software. was the address of the world's first web server, running on a NeXT computer at CERN. The world's first web page address provided information about the World Wide Web project.

07 02, 1997
Drupal 7 path

In 1996 CERN's antiproton machines – the Antiproton Accumulator (AC), the Antiproton Collector and the Low Energy Antiproton Ring (LEAR) – were closed down to free resources for the Large Hadron Collider. But a community of antimatter scientists wanted to continue their LEAR experiments with slow antiprotons. Council asked the Proton Synchrotron division to investigate a low-cost way to provide the necessary low-energy beams.

The resulting design report for the Antiproton Decelerator concluded:

The use of the Antiproton Collector as an antiproton decelerator holds the promise of delivering dense beams of 107 protons per minutes and low energy (100 MeV/c) with bunch lengths down to 200 nanoseconds.

The Antiproton Declerator project was approved on 7 February 1997.

03 05, 1976
Drupal 7 path

The Super Proton Synchrotron (SPS) became the workhorse of CERN’s particle physics programme when it switched on in 1976. The first beam of protons circulated the full 7 kilometres of the accelerator on 3 May 1976. The picture above shows the SPS control room on 17 June 1976, when the machine accelerated protons to 400 GeV for the first time. Research using SPS beams has probed the inner structure of protons, investigated nature’s preference for matter over antimatter, looked for matter as it might have been in the first instants of the universe and searched for exotic forms of matter. A major highlight came in 1983 with the Nobel-prize-winning discovery of W and Z particles, with the SPS running as a proton-antiproton collider.

The SPS operates at up to 450 GeV. It has 1317 conventional (room-temperature) electromagnets, including 744 dipoles to bend the beams round the ring. The accelerator has handled many different kinds of particles: sulphur and oxygen nuclei, electrons, positrons, protons and antiprotons.

05 06, 2011
Drupal 7 path

The ALPHA experiment at CERN reported today that it succeeded in trapping antimatter atoms for over 16 minutes: long enough to begin to study their properties in detail. ALPHA is part of a broad programme at CERN’s antiproton decelerator investigating the mysteries of one of nature’s most elusive substances.

ALPHA studied 300 trapped antiatoms. Trapping antiatoms will allow antihydrogen to be mapped precisely using laser or microwave spectroscopy so that it can be compared to the hydrogen atom, which is among the best-known systems in physics. Any difference between matter and antimatter should become apparent under careful scrutiny.

11 06, 1986
Drupal 7 path

Just after the big bang the universe was too hot and dense for the existence of familiar particles such as protons and neutrons. Instead, their constituents – the quarks and gluons – roamed freely in a "particle soup" called quark-gluon plasma.

In 1986 CERN began to accelerate heavy ions – nuclei containing many neutrons and protons – in the Super Proton Synchrotron (SPS) to study the possibility that quark gluon-plasma was more than just a theory. The aim was to "deconfine" quarks – set them free from their confinement within atoms - by smashing the heavy ions into appropriate targets.

The first experiments used relatively light nuclei such as oxygen and sulphur, and produced results consistent with the quark-gluon plasma theory, but no real proof. In 1994 a second generation of experiments began with lead ions, and by 2000 there was compelling evidence that a new state of matter had been seen.

20 01, 1983
Drupal 7 path

In 1979, CERN decided to convert the Super Proton Synchrotron (SPS) into a proton–antiproton collider. A technique called stochastic cooling was vital to the project's success as it allowed enough antiprotons to be collected to make a beam.

The first proton–antiproton collisions were achieved just two years after the project was approved, and two experiments, UA1 and UA2, started to search the collision debris for signs of W and Z particles, carriers of the weak interaction between particles.

In 1983, CERN announced the discovery of the W and Z particles.The image above shows the the first detection of a Z0 particle, as seen by the UA1 experiment on 30 April 1983. The Z0 itself decays very quickly so cannot be seen, but an electron-proton pair produced in the decay appear in blue. UA1 observed proton-antiproton collisions on the SPS between 1981 and 1993 to look for the Z and W bosons, which mediate the weak fundamental force.

Carlo Rubbia and Simon van der Meer, key scientists behind the work, received the Nobel Prize in physics only a year after the discovery. Rubbia instigated conversion of the SPS accelerator into a proton-antiproton collider and was spokesperson of the UA1 experiment while Van der Meer invented the stochastic cooling technique vital to the collider’s operation.

Find out more

14 07, 1989
Drupal 7 path

With its 27-kilometre circumference, the Large Electron–Positron (LEP) collider was – and still is – the largest electron–positron accelerator ever built. LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions.

LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The picture above shows physicists grouped around a screen in the LEP control room at the moment of start-up. Carlo Rubbia, Director-General of CERN at the time, is in the centre and former Director-General Herwig Schopper is on his left. For seven years, the accelerator operated at 100 GeV, producing 17 million Z particles, uncharged carriers of the weak force. It was then upgraded for a second operation phase, with as many as 288 superconducting accelerating cavities added to double the energy and produce W bosons, also carriers of the weak force. LEP collider energy eventually topped 209 GeV in the year 2000.

During 11 years of research, LEP and its experiments provided a detailed study of the electroweak interaction based on solid experimental foundations. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the LHC in the same tunnel.

19 10, 2004
Drupal 7 path

CERN celebrated its 50th anniversary in style, with the inauguration of the Globe of Science and Innovation (pictured, under construction) on 19 October. A gift from the Swiss Confederation, the Globe is an iconic wooden structure first used for the Swiss national exhibition in 2002 as a pavilion dedicated to the theme of sustainable development. It was designed by architects Thomas Büchi and Hervé Dessimoz of Geneva. The Globe is being developed into a new visitor and networking centre for the Laboratory — a focal point for CERN’s interaction with society.

The inauguration of the Globe in 2004 coincided with the official celebration of CERN’s anniversary, attended by representatives of the Organization’s 20 member states including the heads of state of France, Spain and Switzerland.

Check out the website that contains a record of the activities that marked the Organization’s 50th Anniversary.