All events

Results confirmed

 

The discovery was confirmed soon after by Occhialini and Blacket, who published Some photographs of the tracks of penetrating radiation in the journal Proceedings of the Royal Society A. Anderson's observations proved the existence of the antiparticles predicted by Dirac. For discovering the positron, Anderson shared the 1936 Nobel prize in physics with Victor Hess.

For years to come, cosmic rays remained the only source of high-energy particles. The next antiparticle physicists were looking for was the antiproton. Much heavier than the positron, the antiproton is the antiparticle of the proton. It would not be confirmed experimentally for another 22 years.

Timelines
Discovering the positron

Carl Anderson discovers the positron

Photograph from Occhialini and Blacket’s paper showing tracks of radiation (Image: Blackett, P.M.S., & Occhialini, G.P.S., Royal Society of London Proceedings Series A 139 (1933) 699)

In 1932 Carl Anderson, a young professor at the California Institute of Technology in the US, was studying showers of cosmic particles in a cloud chamber and saw a track left by "something positively charged, and with the same mass as an electron". After nearly a year of effort and observation, he decided the tracks were actually antielectrons, each produced alongside an electron from the impact of cosmic rays in the cloud chamber. He called the antielectron a "positron", for its positive charge and published his results in the journal Science, in a paper entitled The apparent existence of easily deflectable positives (1932).

The discovery was confirmed soon after by Occhialini and Blacket, who in 1934 published Some photographs of the tracks of penetrating radiation in the journal Proceedings of the Royal Society A. Anderson's observations proved the existence of the antiparticles predicted by Dirac. For discovering the positron, Anderson shared the 1936 Nobel prize in physics with Victor Hess.

For years to come, cosmic rays remained the only source of high-energy particles. The next antiparticle physicists were looking for was the antiproton. Much heavier than the positron, the antiproton is the antipartner of the proton. It would not be confirmed experimentally for another 22 years.

Timelines
Cosmic rays

Carl Anderson discovers the positron

In 1932 Carl Anderson, a young professor at the California Institute of Technology in the US, was studying showers of cosmic particles in a cloud chamber and saw a track left by "something positively charged, and with the same mass as an electron". After nearly a year of effort and observation, he decided the tracks were actually antielectrons, each produced alongside an electron from the impact of cosmic rays in the cloud chamber. He called the antielectron a "positron", for its positive charge and published his results in the journal Science, in a paper entitled The apparent existence of easily deflectable positives (1932).

The discovery was confirmed soon after by Occhialini and Blacket, who in 1934 published Some photographs of the tracks of penetrating radiation in the journal Proceedings of the Royal Society A. Anderson's observations proved the existence of the antiparticles predicted by Dirac. For discovering the positron, Anderson shared the 1936 Nobel prize in physics with Victor Hess.

For years to come, cosmic rays remained the only source of high-energy particles. The next antiparticle physicists were looking for was the antiproton. Much heavier than the positron, the antiproton is the antipartner of the proton. It would not be confirmed experimentally for another 22 years.

Timelines
The story of antimatter

The Copenhagen Faustparodie

Among the scientific documents in CERN’s Wolfgang Pauli Archive is a rather unusual item – a copy of the script parodying Goethe’s Faust performed at the Niels Bohr Institute conference, 3-13 April 1932 (exact date of performance not known). Written mostly by Max Delbrück, and decorated with caricatures of the protagonists, the skit features Pauli (Mephistopheles) trying to sell the idea of the neutrino (Gretchen) to a sceptical Paul Ehrenfest (Faust)!

Pauli had postulated the existence of this weightless particle in his famous letter to the ‘Dear radioactive ladies and gentlemen’ at the Tübingen conference in December 1930, but he had to wait until 1956 for experimental confirmation by Reines and Cowan, so in 1932 it was still the subject of debate. Pauli’s reputation for sharp wit made him ideal for his satanic rôle, but in his absence the part was played by Léon Rosenfeld. The rôle of God was assigned to Bohr. The script (in German), can be seen here. An English translation is given in George Gamow’s Thirty Years that Shook Physics.

Timelines
From the archive

Paul Dirac predicts the positron

Paul Dirac published a paper mathematically predicting the existence of an antielectron that would have the same mass as an electron but the opposite charge. The two particles would mutually annihilate upon interaction.

“This new development requires no change whatever in the formalism when expressed in terms of abstract symbols denoting states and observables, but is merely a generalization of the possibilities of representation of these abstract symbols by wave functions and matrices. Under these circumstances one would be surprised if Nature had made no use of it,” he wrote.

Timelines
Discovering the positron

December 1930 - Pauli’s Neutrino letter (now in music and art!)

On 4 December 1930, Wolfgang Pauli wrote his famous letter to the ‘Dear radioactive ladies and gentlemen’ postulating a neutral particle to solve the puzzle of missing energy during beta decay. This letter forms the basis of a new work by ART@CREATIONS, Liebe Radioaktive Damen und Herren, featuring music composed by Petros Stergiopoulos and Oded Ben-Horin.

 

Pauli had to wait nearly 26 years for experimental confirmation of the neutrino. As he wrote to its discoverers, Frederick Reines and Clyde Cowan, ‘Everything comes to him who knows how to wait.’

Timelines
From the archive

Geiger-Müller counters and the coincidence technique

Bothe and Kolhorster’s experiment (Image: L. Bonolis, American Journal of Physics, 79 (2011), 1133. Reproduced under Creative Commons license)

In 1929 Hans Geiger and Walter Müller developed a gas filled ionization detector – a tube that registers individual charged particles. This Geiger-Müller counter was ideal for studying high-energy cosmic rays. Two such tubes placed one above the other could register 'coincidences'  when an incoming particles passes through both tubes  and thus define the path of a cosmic ray. Walther Bothe and Werner Kolhörster connected two Geiger counters to electrometers and immediately observed these ‘coincidences’.

A gamma ray only fires a Geiger counter if it knocks an electron out of an atom. The observation of coincident signals suggests that a cosmic gamma ray had either produced two electrons or that a single electron had fired both counters. To test if it was an electron that had set off both counters Bothe and Kolhörster put gold 4 cm thick between the counters to absorb the electrons knocked off from the atoms. They found that the rays were not affected and concluded that cosmic rays consisted of electrically charged particles and not gamma rays. Interposing a 4 cm thick gold piece between the tubes only slightly reduced the coincidence rate proving that cosmic rays contain charged particles of much higher energy than the Crompton electrons that would be produced by gamma rays. 

Timelines
Cosmic rays

First sighting of positron disregarded

While studying cosmic rays in a Wilson cloud chamber, the Soviet academic Dimitri Skobeltsyn noticed something unexpected among the tracks left by high-energy charged particles. Some particles would act like electrons but curve the opposite way in a magnetic field. In an independent experiment that same year, Caltech graduate student Chung-Yao Chao observed the same phenomenon. The results were inconclusive, and both scientists disregarded the anomaly. 

Timelines
Discovering the positron

Robert Millikan coins the term ‘cosmic rays’

Robert Millikan originally set about to disprove Hess and Kolhörster’s discovery. He and Ira Sprague reached a height of 1500 m in a balloon over Texas where they recorded a radiation intensity of approximately one quarter of Hess and Kohörster's measurement. The difference was caused by a geomagnetic difference between Texas and Central Europe but was blamed on turnover in the intensity curve at high altitude.

Millikan and Harvey Cameron reported on experiments on high-altitude lakes in 1926. They measured ionization rates at various depths in lakes at altitudes of 1500 m and 3600 m. The underwater rate of the lower lake corresponded to the rate obtained 2 m deeper in the higher lake. The pair concluded that particles shoot through space equally in all directions. This demonstrated that two metres of water absorbed about the same as two kilometers of air, and convinced Millikan that rays do come from above.

Millikan was convinced that penetrating radiation entering the atmosphere was electromagnetic and coined the term ‘cosmic rays’ in a paper where he argued that cosmic rays were the ‘birth cries of atoms’ in the galaxy.

Read more: "The Origin of the Cosmic Rays" – R.A. Millikan, G.H. Cameron, Physical Review Letters, 32 (1928) 533

Timelines
Cosmic rays

Wolfgang Pauli appointed professor at ETH Zürich

Despite some reservations about his lecturing style, Wolfgang Pauli was appointed professor of theoretical physics at the ETH, Zürich, on 10 January 1928. He started on 1 April at a basic annual salary of 15,000 francs.

Pauli’s lectures could sometimes be challenging. The equations in this photo  (taken in Copenhagen in 1929) look fairly legible, but K. Alex Müller recalls his habit of standing at the centre of the blackboard and writing equations around himself, almost in circles, rather than horizontally. Students in the ETH’s famous lecture room 6c tended to sit in two groups, to his left and his right, in order to be able to see round him! Markus Fierz considered Pauli the sort of teacher whose defect it is to think about their subject while lecturing; consequently, the listener participates in a sort of soliloquy which, since it is not really addressed to him, is sometimes barely intelligible. But - Fierz added - this taught the student, above all, to think critically about a theory.

Timelines
From the archive

Dirac's equation predicts antiparticles

In 1928, British physicist Paul Dirac wrote down an equation that combined quantum theory and special relativity to describe the behaviour of an electron moving at a relativistic speed. The equation would allow whole atoms to be treated in a manner consistent with Einstein's relativity theory. Dirac's equation appeared in his paper The quantum theory of the electron, received by the journal Proceedings of the Royal Society A on 2 January 1928. It won Dirac the Nobel prize in physics in 1933.

But the equation posed a problem: just as the equation x2=4 can have two possible solutions (x=2 or x=-2), so Dirac's equation could have two solutions, one for an electron with positive energy, and one for an electron with negative energy. But classical physics (and common sense) dictated that the energy of a particle must always be a positive number.

Dirac interpreted the equation to mean that for every particle there exists a corresponding antiparticle, exactly matching the particle but with opposite charge. For the electron there should be an "antielectron" identical in every way but with a positive electric charge. In his 1933 Nobel lecture, Dirac explained how he arrived at this conclusion and speculated on the existence of a completely new universe made out of antimatter:

If we accept the view of complete symmetry between positive and negative electric charge so far as concerns the fundamental laws of Nature, we must regard it rather as an accident that the Earth (and presumably the whole solar system), contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars it is the other way about, these stars being built up mainly of positrons and negative protons. In fact, there may be half the stars of each kind. The two kinds of stars would both show exactly the same spectra, and there would be no way of distinguishing them by present astronomical methods.

Timelines
The story of antimatter, Discovering the positron

First photographs of cosmic rays

Using a cloud chamber, Dimitry Skobelsyn took the first photographs of tracks left by cosmic rays. Skobeltsyn was the first to advance the idea of using the registration of recoil electrons (Compton electrons) in a gas-filled Wilson cloud chamber. In his 1927 experiments, Skobeltsyn worked out the momenta of charged particles passing through the chamber from their degree of deflection by a magnetic field.

Timelines

The Como congress 1927

Wolfgang Pauli, Werner Heisenberg and Enrico Fermi relax on Lake Como during the 1927 International Conference on Physics.

The 1927 conference (held in Como to commemorate the 100th anniversary of the death of Alessandro Volta) is famous for Niels Bohr’s first presentation of his ideas on complementarity. His lecture “The Quantum Postulate and the Recent Development of Atomic Theory” became the basis of the Copenhagen interpretation of quantum mechanics; a fuller version was presented at the Fifth Solvay Conference (Brussels) in October. Bohr had discussed his ideas with colleagues both before and after these conferences, and Pauli was particularly involved in the preparation of the final manuscript.  

Timelines
From the archive

Erwin Schrödinger and Werner Heisenberg devise a quantum theory

In the 1920s, physicists were trying to apply Planck's concept of energy quanta to the atom and its constituents. By the end of the decade Erwin Schrödinger and Werner Heisenberg had invented the new quantum theory of physics. The Physical Institute of the University of Zürich published Schrödinger's lectures on Wave Mechanics (the first from 27 January 1926) and in 1930 Heisenberg's book The physical principles of the quantum theory appeared.

The problem now was that quantum theory was not relativistic; the quantum description worked for particles moving slowly, but not for those at high or "relativistic" velocities, close to the speed of light.

Timelines
The story of antimatter

Wolfgang Pauli begins his studies in Munich

In October 1918 Wolfgang Pauli left Vienna to study at the University of Munich. His Kollegienbuch gives a glimpse of the lecture courses he followed.

During the first semester Pauli attended a couple of morning courses (Unorganische Experimentalchemie and Experimentalphysik I), but gradually the nightlife of Munich claimed more of his attention. He would return late and continue working through much of the night, developing the habit of dropping in only towards the end of morning lectures to check the blackboard and see what he had missed. Sommerfeld tolerated this from his brilliant student, and Pauli achieved the highest mark in all disciplines at the oral doctoral examination on 25 July 1921.

Timelines
From the archive

Kolhörster confirms Hess’s findings

Increase in ionization with height measured by Hess and Kolhörster (Image: Wikimedia Commons)

German physicist Werner Kolhörster took balloon measurements up to a height of 9300 m, confirming Hess’s results for greater heights. His results confirmed unambiguously that an unknown radiation with an extreme penetrating power was causing ionization. The intensity of the radiation was relatively constant, with no day-night or weather-dependent variations.

In 1913 Kolhörster made three balloon flights, reaching 6200 m on the third flight. In 1914 he reached an altitude of 9300 m where he found the ionization was nine times the value on the ground. Kolhörster’s final flight on 28 June 1914 was the same day as the assassination of Franz Ferdinand and the beginning of the First World War. Research on cosmic rays ceased during the war as scientists became involved in other duties and only resumed in the early 1920’s. 

Timelines
Cosmic rays

Victor Hess discovers cosmic rays

Hess back from his balloon flight on 7 August 1912 (Image: Wikimedia Commons)

In 1911 and 1912 Austrian physicist Victor Hess made a series of ascents in a balloon to take measurements of radiation in the atmosphere. He was looking for the source of an ionizing radiation that registered on an electroscope – the prevailing theory was that the radiation came from the rocks of the Earth. In 1911 his balloon reached an altitude of around 1100 metres, but Hess found "no essential change" in the amount of radiation compared with ground level. Then, on 7 April 1912, Hess made an ascent to 5300 metres during a near-total eclipse of the Sun. Since ionization of the atmosphere did not decrease during the eclipse, he reasoned that the source of the radiation could not be the Sun – it had to be coming from further out in space. High in the atmosphere, Hess had discovered a natural source of high-energy particles: cosmic rays.

Hess shared the 1936 Nobel prize in physics for his discovery, and cosmic rays have proved useful in physics experiments – including several at CERN – since.

Read more: "A discovery of cosmic proportions" – CERN Courier

Timelines
Cosmic rays

Victor Hess discovers cosmic rays

In 1911 and 1912 Austrian physicist Victor Hess made a series of ascents in a balloon to take measurements of radiation in the atmosphere. He was looking for the source of an ionizing radiation that registered on an electroscope – the prevailing theory was that the radiation came from the rocks of the Earth.

To test the theory, in 1909 German scientist Theodor Wulf measured the rate of ionization near the top of the Eiffel tower (at a height of about 300 metres) using a portable electroscope. Though he expected the ionization rate to decrease with height, Wulf noted that the ionization rate at the top was just under half that at ground level – a much less significant decrease than anticipated.

Victor Hess's balloon flights took such measurements further. In 1911 his balloon reached an altitude of around 1100 metres, but Hess found "no essential change" in the amount of radiation compared with ground level. Then, on 7 April 1912, Hess made an ascent to 5300 metres during a near-total eclipse of the Sun. Since ionization of the atmosphere did not decrease during the eclipse, he reasoned that the source of the radiation could not be the Sun – it had to be coming from further out in space. High in the atmosphere, Hess had discovered a natural source of high-energy particles: cosmic rays.

Hess shared the 1936 Nobel prize in physics for his discovery, and cosmic rays have proved useful in physics experiments – including several at CERN – since.

Find out more:

About cosmic rays (from the CERN courier)

A discovery of cosmic proportions

Domenico Pacini and the origin of cosmic rays

LHCf: bringing cosmic collisions down to Earth

Cosmic rays at CERN

- The Large Hadron Collider forward experiment

- The CLOUD experiment

Timelines
The story of antimatter

Charles Thomson Rees Wilson sees particle tracks

Cloud formed on ions due to α-Rays (Image: CTR Wilson Roy, Proceedings of the Royal Society A, Volume 85, Plate 9)

The cloud chamber was fundamental in the history of particle physics and cosmic rays. This device made it possible to record individual charged particles in the secondary particle showers that are initiated when cosmic rays strike particles in the upper atmosphere. Wilson won the 1927 Nobel Prize for his development of the cloud chamber, which he originally undertook to study atmospheric phenomena. In April 1911 he presented his first rough photographs of particle tracks at the Royal Society in London.

A cloud chamber is a box containing a supersaturated vapor. As charged particles pass through, they ionize the vapor, which condenses to form droplets on the ions. The tracks of the particles become visible as trails of droplets, which can be photographed. During the first half of the 20th century, experiments that looked at cosmic rays passing through cloud chambers revealed the existence of several fundamental particles, including the positron, the muon and the first strange particles.

Timelines
Cosmic rays

Pacini and underwater measurements

Domenico Pacini making a measurement on 20 October 1910 (Image: Wikimedia Commons)

In 1911, Italian physicist Domenico Pacini took readings on a Wulf-style electroscope in various locations and noted a 30% reduction in radioactivity between ionization levels on a ship 300 m off shore from Livorno compared to measurements on land. This result suggested that a significant portion of the penetrating radiation must be independent of emission from the Earth’s crust. He published his paper Penetrating radiation at sea on the 2 April 1911.

Pacini also measured the levels of radiation in the deep sea of the Genova gulf. This experiment pioneered the technique of underwater measurement of radiation. He noted that there was 20% less radiation 3 metres below the water compared to on the surface, concluding that the ionizing radiation must come from the atmosphere.

Read more: "Domenico Pacini and the origin of cosmic rays" – CERN Courier

Timelines
Cosmic rays

Albert Gockel’s flights

To measure ionizing radiation away from the earth’s surface, several researchers took to the air in balloon flights in the first decade of the 20th century. One of these pioneers, Albert Gockel, measured the levels of ionizing radiation up to a height of 3000 metres. He concluded that the ionization did not decrease with height and consequently could not have a purely terrestrial origin. He also introduced the term “kosmische Strahlung” – cosmic radiation.

Later calculations by Schrödinger showed that the radioactivity came in part from above and in part from the Earth’s crust and that the decrease in the radioactivity from the Earth’s crust could be offset by the growth of radioactivity from extraterrestrial sources up to 3000 m. 

Timelines
Cosmic rays

Theodor Wulf, a new electrometer, and the Eiffel tower

The original Wulf electroscope (Image: Wikimedia Commons)

In 1909 Theodor Wulf, a Jesuit priest, designed and built a more sensitive and more transportable electrometer than the gold leaf electroscopes. He measured the ionization of the air in various locations in Germany, Holland and Belgium, concluding that his results were consistent with the hypothesis that the penetrating radiation was caused by radioactive substances in the upper layers of the Earth’s crust.

Wulf then started measuring changes in radioactivity with height to understand the origin of the radiation. The hypothesis was simple: if the radioactivity was coming from the Earth, it should decrease with height.

Wulf took his electroscope to the top of the Eiffel tower in 1909 and found that the intensity of radiation “decreases at nearly 300 m [altitude to] not even to half of its ground value”. This was too small a decrease to confirm his hypothesis.

However, unknown to Wulf, his results were due to the radioactive metal of the Eiffel tower. The search for the source of the mysterious ionizing radiation would continue. 

Timelines
Cosmic rays

Albert Einstein publishes his theory of Special Relativity

On 30 June 1905 the German physics journal Annalen der Physik published a paper by a young patent clerk called Albert Einstein. The paper, Zur Elektrodynamik bewegter Körper, (On the Electrodynamics of Moving Bodies) set out Einstein's theory of Special Relativity, which explains the relationship between space and time – and between energy and mass – in the famous equation E=mc2 The paper used Planck's concept of energy quanta to describe how light travels through space.

Timelines
The story of antimatter

Bertha Pauli’s son Wolfgang is born

Bertha Camilla Schütz (known as Maria) was born in Vienna in 1878. A writer and journalist, she followed in her father’s footsteps as collaborator on the Neue Freie Presse, writing theatre reviews and historical essays. In 1899 she married Wolf Pauli and their first child was born on 25 April 1900. Wolfgang junior, seen here at the age of 20 months, grew up to be a Nobel prizewinning physicist, and his sister Hertha (1906-1973) became an actress and writer. Their mother was a pacifist, a socialist and a feminist, participating in the electoral campaign of 1919 to urge women to cast their newly won vote for the Social Democratic Party. She died (suicide) on 15 November 1927.

Timelines
From the archive

The source: Earth, atmosphere or outer space?

In studying electrical conduction through air in 1899, Julius Elster and Hans Geitel designed a key experiment where they found that surrounding a gold leaf electroscope with a thick metal box would decrease its spontaneous discharge. From this observation, they concluded that the discharge was due to highly penetrating ionizing agents outside of the container. In a similar experiment at about the same time, Charles Thomson Rees Wilson in Cambridge came to the same conclusion.

To test whether the ionizing radiation originated beyond the atmosphere, in 1901 Charles Thomson Rees Wilson took measurements of natural radioactivity using an electroscope inside an old railway tunnel in Scotland. If the radiation were coming from outer space, Wilson could have expected to measure a signification reduction in the tunnel compared to outside on the surface. But he saw no such reduction. Following Wilson’s observations, the scientific community largely dismissed the extra-terrestrial theory.

Since some of the radiation was found to be too penetrating and perhaps too abundant to originate from known sources, altitude-dependent studies were carried out to test the idea of an extraterrestrial source – although at first the results were contradictory. 

Timelines
Cosmic rays

Becquerel discovers radioactivity

The first evidence for radioactivity – images formed by Becquerel’s uranium salts (Image: Wikimedia Commons)

French physicist Henri Becquerel discovered radioactivity while working on a series of experiments on phosphorescent materials. On 26 February 1986, he placed uranium salts on top of a photographic plate wrapped in black paper. The salts caused a blackening of the plate despite the paper in between. Becquerel concluded that invisible radiation that could pass through paper was causing the plate to react as if exposed to light.

Marie Curie decided to study the new radiation using the sensitive electrometer invented by her husband, Pierre, to measure the conductivity of air that the radiation induced.

The discovery of radioactivity cultivated great research interest in Germany and the UK about the origin of the spontaneous electrical discharge observed earlier in the air. The simplest hypothesis was that the discharge was caused by the radioactive materials on Earth, though this was difficult to prove.

Researching natural radioactivity eventually lead to the discovery of cosmic rays. 

Timelines
Cosmic rays

First observations of the spontaneous discharge of an electrometer

The torsion balance electrometer Coulomb used to make his observations (Image: Wikimedia commons)

In 1785, the French physicist Charles Augustin de Coulomb made three reports on electricity and magnetism to France’s Royal Academy of Sciences. His third paper described an experiment with a torsion balance, which showed that the device would spontaneously discharge due to the action of the air rather than defective insulation.

In 1850, Italian physicist Cano Matteucci and later British physicist William Crookes in 1879 showed that the rate of spontaneous discharge decreased at lower atmospheric pressures. The search for an explanation for the nature of this spontaneous discharge paved the way for the discovery of cosmic rays – high-energy particles from outer space.  

Read more: Extract from Mémoires sur l'électricité et le magnétisme (1785-89) by Charles Augustin de Coulomb.

Timelines
Cosmic rays